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Abstract— This paper investigates the problem of clas-
sification of multi-class movement execution tasks from
signals obtained via functional near infrared spec-
troscopy (fNIRS). fNIRS data is acquired from five
healthy subjects while performing four types of motor
execution tasks as well as a non-movement task (five
classes in total). Various feature sets are extracted
based on the mean of changes in the concentration
of oxygenated hemoglobin ([∆HbO]) signals computed
across the [0 − 2], [1 − 3], and [2 − 4] sec intervals.
A multi-class support vector machine classifier with
a quadratic polynomial kernel (QSVM) is utilized to
classify movement and non-movement classes (total of
5 classes) using the data from the three time intervals.
Classification results revealed that the average accuracy
obtained for data using [2 − 4] sec interval is higher
than the other two (78.55%). In addition, a comparison
between the classification results of the data obtained
from only the motor cortex vs from multiple regions
of the brain is done. Our results demonstrate that by
using fNIRS data from different regions of the brain,
the classification accuracy is improved by 10− 12% as
compared to the case when the data is used only from
the motor region.

I. INTRODUCTION

Functional near infrared spectroscopy (fNIRS) is an emerg-
ing non-invasive brain imaging technique which measures
changes in the concentration of the cerebral oxygenated
hemoglobin ([∆HbO]) and deoxygenated hemoglobin
([∆HbR]) [1]. Because of its advantages such as low cost,
portability, and relatively high spatial resolution, fNIRS
has been considered as a promising non-invasive method
for monitoring brain activities in various neuroscience
and neuroengineering domains including brain computer
interfaces (BCI). The goal of a BCI is to directly convert
signals recorded from the brain (e.g. related to user’s
intention) into commands for controlling external devices
to, for example, provide assistance for patients with severe
motor disabilities. Hence, accurate classification of signals
for discriminating various forms of user’s intentions is of
a great importance in BCI applications.
fNIRS-based BCIs employ classification to decode the
changes in the cerebral concentration of the HbO and
HbR related to brain activities. Several research studies
have been devoted to using fNIRS in BCI applications.
Two main classes of activities used in fNIRS-based BCIs
are movement-related activities such as motor execution

and imagery [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], and mental activities such as mental
arithmetic, object rotation, and mental counting [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. In [25], [26],
[27], both movement-related and mental activities have
been considered. In most of these studies, fNIRS signals
corresponding to the movement-related and mental activ-
ities, have been recorded from the motor and prefrontal
cortices, respectively.
An important challenge in the development of the classi-
fication algorithms for BCI applications is the number of
commands that can be extracted from neural recordings.
BCI systems capable of discriminating larger number of
tasks are of great interest. Most studies of motor exe-
cution/imagery tasks, have only considered binary clas-
sification problems [2], [3], [5], [6], [7], [8], [9], [11],
[12], [13], [14] . In [4], classification of 2, 3, and 4-class
motor execution tasks were investigated, and an average
accuracy of 82.5% was reported for the 4-class problem. In
[10], 2 and 4-class classification problems were studied for
motor imagery tasks where 40.55% average classification
accuracy was achieved for the 4-class case.
In this paper, we focus on the classification problem for
movement-based tasks as they provide a more natural way
for controlling external devices in BCI applications. Four
different motor execution tasks and one non-movement
task are considered. To the best of our knowledge, this
is the first fNIRS study that performs the multi-class
classification for 5 motor-related activities. Unlike most
existing works, where fNIRS channels are placed in spe-
cific regions on the cortex, in our study, fNIRS channels
are placed across various regions of the brain including
the prefrontal, motor, parietal, and occipital cortices. The
mean of [∆HbO] signals is used to extract features for
the classification problem, and a multi-class support vector
machine algorithm with a quadratic polynomial kernel
(QSVM) is employed as the classifier.
Two major issues exist in extracting a proper set of features
from fNIRS recordings: 1) determining the fNIRS time
window over which the features are extracted from, and
2) the location of the fNIRS channels where the data is
recorded from. In this paper, we investigate these two
issues. First, we present the accuracy results for various sets
of features obtained from data corresponding to different
time intervals of fNIRS recordings. The accuracy results
are compared to determine the best time interval that
results in the highest accuracy. Second, we evaluate the
classification accuracy using the data obtained from several



Figure 1. Optodes placement and channel configuration covering pre-
frontal, motor, parietal, and occipital cortices following the 10 − 20
EEG system (red circles: sources, blue circles: detectors, purple lines:
channels).

regions of the brain, and compare the results to the case in
which the data is obtained only from the channels located
over the motor cortex.
The rest of the paper is organized as follows. The exper-
imental paradigm, and the data collection, pre-processing,
and classification procedures are described in Section II.
Results and discussions are presented in Section III, and
the paper is concluded in Section IV.

II. METHODS

A. Experimental Setup

Five healthy subjects aged between 19 − 35 participated
in the experiment. Written informed consents approved
by the Rutgers’ Institutional Review Board (IRB) were
obtained prior to the experiments. fNIRS signals were
recorded via NIRx System (NIRScout, NIRx Medical Tech-
nologies, LLC, wavelengths of 760 nm and 830 nm) at a
sampling rate of 7.81 Hz. Sixteen sources and twenty-four
detectors were placed over the prefrontal, motor, parietal,
and occipital cortices resulting in a total of 54 channels.
A source-detector separation of 3 cm was considered.
Using this distance ensures that the photons reach the
cortex [28], [29]. The map of location of sources (red
circles) and detectors (blue circles) and their corresponding
channel locations, with respect to the standard 10 − 20
electroencephalography (EEG) system, is shown in Figure
1.
The experiment included 3 blocks of dictated motor ex-
ecution tasks. In each block, subjects were instructed to
move a square from the center of the screen towards one of
four (up, down, left, and right) directions using a joystick
if there was an arrow inside the square pointing to the
corresponding direction, or do nothing (center) if there

Figure 2. Visual illustration of a single trial.

was a circle inside the square. Each trial consisted of 4
sec post-stimulus motor execution interval followed by a
rest interval between 10 and 12 sec (see Figure 2). In
each block, 15 trials of each class (directions/center) were
performed by each subject (45 trials for each class in total).

B. Pre-processing

fNIRS data from [−1, 4] sec interval, where 0 is the
stimulus onset, was selected from each trial, and was pre-
processed using nirsLAB [30]. First, data was corrected for
drifts and artifacts, then it was filtered using a [0.01, 0.2]
Hz band-pass filter to remove the cardiac signal and low-
frequency oscillations. Using modified Beer-Lambert law
[1], the filtered optical intensity data was converted to the
[∆HbO] and [∆HbR]. For each trial, the data was then
baseline corrected by subtracting the baseline from the
original data. The baseline was considered the average of
1 sec of the signal before the onset of the stimulus.

C. Feature Extraction and Classification

Features were extracted from intervals of [0 − 2], [1 − 3],
and [2 − 4] sec. For each interval, the features were
considered as the mean of the [∆HbO], for all channels.
The signal mean was calculated for 1 sec overlapping
windows with 50% overlaps (vectors of 54 × 1 size).
Extracted features from all trials were separated into two
randomized groups for training (75%) and testing (25%). A
QSVM classifier with 5-fold cross validation was then used
for the classification. 2-sec length intervals were selected
in order to evaluate the classification results using short
duration of the recorded data, as compared to other studies
that have mostly extracted features from longer intervals
(≥ 5 sec) [2], [3], [5], [6], [7], [8], [9], [11], [12], [14].

III. RESULTS AND DISCUSSIONS

Feature extraction and classification presented in Section
II were applied to the fNIRS data for the “up”, “down”,
“left”, and “right” movements, and the non-movement
classes (a total of 5 classes) using features extracted from
various intervals. Accuracy results for all subjects are
shown in Table I. Moreover, the confusion matrix for the
classification using features extracted for the interval of
[2− 4] sec for an arbitrary subject (Subject 1) is shown in
Figure 3.
Comparing the classification accuracy results using features
extracted from different intervals, it is observed that for all
subjects the accuracy achieved from data obtained over the



Table I
CLASSIFICATION ACCURACY RESULTS FOR MOVEMENT DIRECTIONS

OF “UP”, “DOWN”, “LEFT”, “RIGHT”, AND NON-MOVEMENT (5
CLASSES) USING FEATURES EXTRACTED FROM DIFFERENT

POST-STIMULUS INTERVALS. DATA FROM ALL CHANNELS IS USED.

[0− 2] sec [1− 3] sec [2− 4] sec
Subject 1 72.37± 4.51 76.32± 2.96 78.73± 2.99
Subject 2 74.33± 3.38 78.85± 3.11 80.75± 4.36
Subject 3 69.64± 3.61 74.16± 4.06 75.83± 5.01
Subject 4 74.91± 4.58 79.85± 3.42 81.27± 3.46
Subject 5 69.01± 3.21 74.43± 3.91 76.19± 4.09
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Figure 3. Confusion matrix of classification for an arbitrary subject
(Subject 1) using features extracted from [2− 4] sec interval. Data from
all channels is used.

[2 − 4] sec interval is higher than the accuracy obtained
from data over [0− 2] and [1− 3] sec intervals.
To investigate the effects of using data from all channels
(as opposed to only those placed on the motor cortex)
on classification results, classification was also performed
considering only the data obtained from the channels
placed over the motor cortex. The classification results for
all subjects and using the features extracted from various
intervals are summarized in Table II. In addition, the
confusion matrix of the classification using the features
extracted from the [2−4] sec interval for Subject 1 is shown
in Figure 4. Similar to the case of using all channels, the
highest classification accuracy is achieved for the interval
of [2− 4].
Table III provides the comparison of the average classi-
fication accuracy over all subjects for different intervals,
and using two sets of channels (i.e. all channels vs only
the motor cortex channels). Using the data from motor
channels, the results for average classification accuracy
achieved across all subjects were 61.21%, 64.84%, and
66.2% for the [0 − 2], [1 − 3], and [2 − 4] sec intervals,
respectively, whereas in the case of using all channels the
results for accuracy are increased by 10 − 12%. The data
from all channels and [2− 4] sec interval give the highest
average accuracy of 78.55%.

Table II
CLASSIFICATION ACCURACY RESULTS FOR MOVEMENT DIRECTIONS

OF “UP”, “DOWN”, “LEFT”, “RIGHT”, AND NON-MOVEMENT (5
CLASSES) USING FEATURES EXTRACTED FROM DIFFERENT

POST-STIMULUS INTERVALS. DATA FROM MOTOR CHANNELS IS USED.

[0− 2] sec [1− 3] sec [2− 4] sec
Subject 1 57.92± 3.81 61.14± 3.51 65.06± 3.48
Subject 2 65.09± 3.56 68.91± 3.19 68.31± 4.68
Subject 3 60.11± 4.29 63.06± 3.25 62.88± 3.77
Subject 4 64.19± 3.97 69.01± 3.29 70.44± 3.62
Subject 5 58.72± 4.06 62.08± 3.27 64.55± 4.05
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Figure 4. Confusion matrix of classification for an arbitrary subject
(Subject 1) using features extracted from [2− 4] sec interval. Only data
from motor channels is considered.

Table III
AVERAGE CLASSIFICATION ACCURACY RESULTS FOR MOVEMENT

DIRECTIONS OF ‘UP”, “DOWN”, “LEFT”, “RIGHT”, AND
NON-MOVEMENT (5 CLASSES) USING FEATURES EXTRACTED FROM
DIFFERENT POST-STIMULUS INTERVALS. DATA FROM TWO SETS OF

CHANNELS (ALL CHANNELS AND ONLY MOTOR CHANNELS) IS USED.

[0− 2] sec [1− 3] sec [2− 4] sec
All Channels 72.05± 3.90 76.72± 3.52 78.55± 4.04

Motor Channels 61.21± 3.95 64.84± 3.30 66.25± 3.94

To the best of our knowledge, this is the first work on
the multi-class classification for 5 activities corresponding
to motor execution tasks using fNIRS recordings. Previous
fNIRS studies of classification of multi-class movement-
related tasks have reported the average accuracy of 82.5%
([4]) and 40.55% ([10]) for 4 classes. In [4], fNIRS data
was recorded from 8 channels over the motor cortex, and
in [10], 32 channels over the prefrontal cortex were used.
In this study, we designed an fNIRS cap with 54 channels
over the prefrontal, motor, parietal, and occipital regions to
record the fNIRS signals from multiple regions of the brain.
Using the data from all channels, an average classification
accuracy of 78.55% was achieved across all subjects during
the [2−4] post-stimulus interval for 5-class motor execution
tasks. This result gives about 12% improvement in accuracy
comparing to the case of using channels only from the



motor cortex. This finding suggests that the data from brain
regions other than the motor cortex contain useful discrim-
inatory information for motor-related tasks, and therefore,
should be considered in classification. One possible expla-
nation for this observation is that various brain regions are
involved in the planning and performing of motor execution
tasks [31], [32]. Moreover, the classification results from
three different post-stimulus intervals of [0 − 2], [1 − 3],
and [2 − 4] sec, demonstrated that the best accuracy was
obtained by using data from the [2 − 4] sec interval. This
might be due to the inherent delays in the hemodynamic
response with respect to neural activities, which naturally
makes the data from later intervals more informative in
terms of differentiation between various brain activities.
For instance, in [33], the classification of three mental tasks
was performed for the data extracted from two intervals of
[0 − 2.5] and [2 − 7]. The average classification accuracy
for [2 − 7] window was about 10% higher (65.9%) than
the [0 − 2.5] window (57.5%). It is worth mentioning
that higher accuracy results can possibly be achieve by
using the data from longer intervals. However, as one of
the important challenges in improving the practicality of
fNIRS-based BCIs has been reducing the computational
lag, in this study, we aimed to investigate the classification
results using the data from short intervals.

IV. CONCLUSION AND FUTURE WORK

In this paper, the classification problem for multi-class
motor execution tasks was considered. This study pursued
two goals: investigating the effects of using different time
intervals of fNIRS data in a trial on the classification
accuracy, and examining if using data from different loca-
tions of the brain can improve the classification results in
contrast to using the data only from the motor cortex (com-
monly used in the motor-related classification problems).
To achieve these goals, we employed a QSVM classifier,
with the mean of [∆HbO] signals as features. Classification
accuracy results were computed for different post-stimulus
intervals ([2−4] sec intervals of [0−2], [1−3], and [2−4]
sec). Results showed that the highest average accuracy
was achieved using the [2 − 4] sec interval (78.55%). To
study the effects of using data from different regions of
the brain on the classification performance, two sets of the
data, one from the prefrontal, motor, parietal, and occipital
regions, and another from only the motor region, were
considered. The obtained average classification accuracy
results improved by 10 − 12% when using the data from
different regions rather than just using data from the motor
channels. Future work involves considering other feature
extraction and classification algorithms to find the optimal
choices for feature sets to achieve better classification
performance.
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[14] S. B. Erdoğan, E. Özsarfati, B. Dilek, K. S. Kadak, L. Hanoğlu,
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